|
In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, the analog filter, which is an electronic circuit operating on continuous-time analog signals. A digital filter system usually consists of an analog-to-digital converter to sample the input signal, followed by a microprocessor and some peripheral components such as memory to store data and filter coefficients etc. Finally a digital-to-analog converter to complete the output stage. Program Instructions (software) running on the microprocessor implement the digital filter by performing the necessary mathematical operations on the numbers received from the ADC. In some high performance applications, an FPGA or ASIC is used instead of a general purpose microprocessor, or a specialized DSP with specific paralleled architecture for expediting operations such as filtering. Digital filters may be more expensive than an equivalent analog filter due to their increased complexity, but they make practical many designs that are impractical or impossible as analog filters. When used in the context of real-time analog systems, digital filters sometimes have problematic latency (the difference in time between the input and the response) due to the associated analog-to-digital and digital-to-analog conversions and anti-aliasing filters, or due to other delays in their implementation. Digital filters are commonplace and an essential element of everyday electronics such as radios, cellphones, and AV receivers. ==Characterization== A digital filter is characterized by its transfer function, or equivalently, its difference equation. Mathematical analysis of the transfer function can describe how it will respond to any input. As such, designing a filter consists of developing specifications appropriate to the problem (for example, a second-order low pass filter with a specific cut-off frequency), and then producing a transfer function which meets the specifications. The transfer function for a linear, time-invariant, digital filter can be expressed as a transfer function in the ''Z''-domain; if it is causal, then it has the form: : where the order of the filter is the greater of ''N'' or ''M''. See ''Z''-transform's LCCD equation for further discussion of this transfer function. This is the form for a recursive filter with both the inputs (Numerator) and outputs (Denominator), which typically leads to an IIR infinite impulse response behaviour, but if the denominator is made equal to unity i.e. no feedback, then this becomes an FIR or finite impulse response filter. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Digital filter」の詳細全文を読む スポンサード リンク
|